115 research outputs found

    Sums of four prime cubes in short intervals

    Full text link
    We prove that a suitable asymptotic formula for the average number of representations of integers n=p13+p23+p33+p43n=p_{1}^{3}+p_{2}^{3}+p_{3}^{3}+p_{4}^{3}, where p1,p2,p3,p4p_1,p_2,p_3,p_4 are prime numbers, holds in intervals shorter than the the ones previously known.Comment: Unconditional result improved by using a Robert-Sargos estimate (lemmas 6-7); more detailed proof of Lemma 5 inserted. Correction of a typo. 10 page

    A Ces\`aro Average of Hardy-Littlewood numbers

    Full text link
    Let Λ\Lambda be the von Mangoldt function and rHL(n)=m1+m22=nΛ(m1),r_{\textit{HL}}(n) = \sum_{m_1 + m_2^2 = n} \Lambda(m_1), be the counting function for the Hardy-Littlewood numbers. Let NN be a sufficiently large integer. We prove that nNrHL(n)(1n/N)kΓ(k+1)=π1/22N3/2Γ(k+5/2)12NΓ(k+2)π1/22ρΓ(ρ)Γ(k+3/2+ρ)N1/2+ρ+1/2ρΓ(ρ)Γ(k+1+ρ)Nρ+N3/4k/2πk+11Jk+3/2(2πN1/2)k+3/2N1/4k/2πkρΓ(ρ)Nρ/2πρ1Jk+1/2+ρ(2πN1/2)k+1/2+ρ+Ok(1).\begin{align}\sum_{n \le N} r_{\textit{HL}}(n) \frac{(1 - n/N)^k}{\Gamma(k + 1)} &= \frac{\pi^{1 / 2}}2 \frac{N^{3 / 2}}{\Gamma(k + 5 / 2)} - \frac 12 \frac{N}{\Gamma(k + 2)} - \frac{\pi^{1 / 2}}2 \sum_{\rho} \frac{\Gamma(\rho)}{\Gamma(k + 3 / 2 + \rho)} N^{1 / 2 + \rho}\\ &+ 1/2 \sum_{\rho} \frac{\Gamma(\rho)}{\Gamma(k + 1 + \rho)} N^{\rho} + \frac{N^{3 / 4 - k / 2}}{\pi^{k + 1}} \sum_{\ell \ge 1} \frac{J_{k + 3 / 2} (2 \pi \ell N^{1 / 2})}{\ell^{k + 3 / 2}}\\ &- \frac{N^{1 / 4 - k / 2}}{\pi^k} \sum_{\rho} \Gamma(\rho) \frac{N^{\rho / 2}}{\pi^\rho} \sum_{\ell \ge 1} \frac{J_{k + 1 / 2 + \rho} (2 \pi \ell N^{1 / 2})} {\ell^{k + 1 / 2 + \rho}} + \mathcal{O}_k(1).\end{align} for k>1k > 1, where ρ\rho runs over the non-trivial zeros of the Riemann zeta-function ζ(s)\zeta(s) and Jν(u)J_{\nu} (u) denotes the Bessel function of complex order ν\nu and real argument uu.Comment: submitte

    The number of Goldbach representations of an integer

    Full text link
    We prove the following result: Let N2N \geq 2 and assume the Riemann Hypothesis (RH) holds. Then n=1NR(n)=N222ρNρ+1ρ(ρ+1)+O(Nlog3N), \sum_{n=1}^{N} R(n) =\frac{N^{2}}{2} -2 \sum_{\rho} \frac{N^{\rho + 1}}{\rho (\rho + 1)} + O(N \log^{3}N), where ρ=1/2+iγ\rho=1/2+i\gamma runs over the non-trivial zeros of the Riemann zeta function ζ(s)\zeta(s)

    The Selberg integral and a new pair-correlation function for the zeros of the Riemann zeta-function

    Full text link
    The present paper is a report on joint work with Alessandro Languasco and Alberto Perelli on our recent investigations on the Selberg integral and its connections to Montgomery's pair-correlation function. We introduce a more general form of the Selberg integral and connect it to a new pair-correlation function, emphasising its relations to the distribution of prime numbers in short intervals.Comment: Proceedings of the Third Italian Meeting in Number Theory, Pisa, September 2015. To appear in the "Rivista di Matematica dell'Universita` di Parma

    A Diophantine problem with prime variables

    Full text link
    We study the distribution of the values of the form λ1p1+λ2p2+λ3p3k\lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 p_3^k, where λ1\lambda_1, λ2\lambda_2 and λ3\lambda_3 are non-zero real number not all of the same sign, with λ1/λ2\lambda_1 / \lambda_2 irrational, and p1p_1, p2p_2 and p3p_3 are prime numbers. We prove that, when 1<k<4/31 < k < 4 / 3, these value approximate rather closely any prescribed real number.Comment: submitte

    A Ces\`aro Average of Goldbach numbers

    Full text link
    Let Λ\Lambda be the von Mangoldt function and (rG(n)=m1+m2=nΛ(m1)Λ(m2))(r_G(n) = \sum_{m_1 + m_2 = n} \Lambda(m_1) \Lambda(m_2)) be the counting function for the Goldbach numbers. Let N2N \geq 2 be an integer. We prove that nNrG(n)(1n/N)kΓ(k+1)=N2Γ(k+3)2ρΓ(ρ)Γ(ρ+k+2)Nρ+1+ρ1ρ2Γ(ρ1)Γ(ρ2)Γ(ρ1+ρ2+k+1)Nρ1+ρ2+Ok(N1/2),\begin{align} &\sum_{n \le N} r_G(n) \frac{(1 - n/N)^k}{\Gamma(k + 1)} = \frac{N^2}{\Gamma(k + 3)} - 2 \sum_\rho \frac{\Gamma(\rho)}{\Gamma(\rho + k + 2)} N^{\rho+1}\\ &\qquad+ \sum_{\rho_1} \sum_{\rho_2} \frac{\Gamma(\rho_1) \Gamma(\rho_2)}{\Gamma(\rho_1 + \rho_2 + k + 1)} N^{\rho_1 + \rho_2} + \mathcal{O}_k(N^{1/2}), \end{align} for k>1k > 1, where ρ\rho, with or without subscripts, runs over the non-trivial zeros of the Riemann zeta-function ζ(s)\zeta(s).Comment: submitte

    On the constant in the Mertens product for arithmetic progressions. I. Identities

    Full text link
    The aim of the paper is the proof of new identities for the constant in the Mertens product for arithmetic progressions. We deal with the problem of the numerical computation of these constants in another paper.Comment: References added, misprints corrected. 9 page

    A Diophantine problem with a prime and three squares of primes

    Get PDF
    We prove that if λ1\lambda_1, λ2\lambda_2, λ3\lambda_3 and λ4\lambda_4 are non-zero real numbers, not all of the same sign, λ1/λ2\lambda_1 / \lambda_2 is irrational, and ϖ\varpi is any real number then, for any \eps > 0 the inequality \bigl|\lambda_1 p_1 + \lambda_2 p_2^2 + \lambda_3 p_3^2 + \lambda_4 p_4^2 + \varpi \bigr| \le \bigl(\max_j p_j \bigr)^{-1 / 18 + \eps} has infinitely many solution in prime variables p1p_1, ..., p4p_4Comment: submitte
    corecore